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Abstract—How can we quantify the influence among repos-
itories in online archives like GitHub? Determining repository
influence is an essential building block for understanding the
dynamics of GitHub-like software archives. The key challenge is
to define the appropriate representation model of influence that
captures the nuances of the concept and considers its diverse
manifestations. We propose PIMan, a systematic approach to
quantify the influence among the repositories in a software
archive by focusing on the social level interactions. As our
key novelty, we introduce the concept of Plausible Influence
which considers three types of information: (a) repository level
interactions, (b) author level interactions, and (c) temporal
considerations. We evaluate and apply our method using 2089
malware repositories from GitHub spanning approximately 12
years. First, we show how our approach provides a powerful
and flexible way to generate a plausible influence graph whose
density is determined by the Plausible Influence Threshold (PIT),
which is modifiable to meet the needs of a study. Second, we find
that there is a significant collaboration and influence among the
repositories in our dataset. We identify 28 connected components
in the plausible influence graph (PIT = 0.25) with 7% of the
components containing at least 15 repositories. Furthermore, we
find 19 repositories that influenced at least 10 other repositories
directly and spawned at least two “families” of repositories. In
addition, the results show that our influence metrics capture the
manifold aspects of the interactions that are not captured by
the typical repository popularity metrics (e.g. number of stars).
Overall, our work is a fundamental building block for identifying
the influence and lineage of the repositories in online software
platforms.

Index Terms—Empirical, Plausible Influence, GitHub Reposi-
tory, Social Interaction, Collaboration.

I. INTRODUCTION

Determining the influence among software repositories is an
essential building block for studying the dynamics of software
evolution and collaboration in online Open Source Software
(OSS) platforms. These OSS platforms contain a massive num-
ber of repositories and facilitate the engagement of millions
of users [1]. GitHub is arguably the largest such platform
with more than 32 million repositories and 34 million users
exhibiting significant collaborative interactions [2]. As these
are open source coding platforms, there are no restrictions for
users to create new repositories. Naturally, it attracts users with
varied expertise levels, and they develop their own software,
and also copy and duplicate other repositories. As a result,
there is a significant collaboration and code reuse [3], [4]
in these platforms. Researchers are interested in studying the
dynamics of the ecosystem at the repository level, which could

Fig. 1: Our approach captures plausible influence between reposito-
ries in a tuneable and visually powerful way. We show: (a) the dense
PIGraph with lower influence threshold, PIScore ≥ PIT = 0.25
with 426 nodes, and 1191 edges, and (b) the sparse PIGraph with
higher influence threshold, PIScore ≥ PIT = 0.7 with 6 nodes, and
7 edges.

reveal insights into software evolution. Interestingly, there is
also a significant malware development activity within public
repositories, which could be valuable for security analysts [5],
[6]. Therefore, we decide to focus on establishing influence
among malware repositories in our work.

Given two repositories, how can we quantify the level
of influence between them by analyzing their platform-level
interactions? This is the problem that we address here. We
can identify the following types of interactions: (a) an author
can “appreciate” the repository of another author by starring
it, watching it, and commenting on it, (b) an author can
follow another author, and (c) an author can fork popular
repositories in the archive. The key challenge is developing
a comprehensive approach for defining influence, and even
further, estimating the possibility that such an influence has
occurred. Combining these different types of information is a
non-trivial task. Note that here we define influence which is
a much broader concept than, say, code-level similarity which
obviously overlaps with influence but is ultimately different. In
fact, our intention is to explore the interplay between influence
and code-level similarity. Establishing similarity at the code
level is an open research question in its own right and here we
only employ it as an indirect validation of our influence metric
in this study. Once we can quantify the influence between two
repositories, we can understand the influence interactions for
a group of repositories.

The challenge: the elusive nature of influence. We want
to stress that the goal is to identify the likelihood of influenceIEEE/ACM ASONAM 2022, November 10-13, 2022
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between repositories as it is hard to prove influence with cer-
tainty. First, the concept of influence is inherently challenging
and goes beyond the code-level similarity. For example, author
A can be inspired by repository R, even copy it initially, but
then improve it substantially. The final repository can have
minimal code level similarity with the repository R. Second,
it is nearly impossible to establish influence even if we define
it in a very strict sense: author A copies (parts of) repository
R of author B. For example, we can think of a scenario
where authors A and B emulate or copy a third repository
(or some other source). So even if two copied repositories are
identical, that does not prove that one has influenced the other
in a strict sense. However, we argue that the likelihood of
influence will be very helpful in studying software evolution
and collaboration patterns.

There are relatively few efforts that focus on establishing
influence among repositories. Most efforts typically focus on
one or a few high-level metrics such as forking relation-
ships and number of stars, or the focus on influence and
popularity of authors. First, there are efforts that study the
popularity and importance of repositories [7], [8] using a
limited number of readily available metrics such as star and
fork relationships. However, these works do not focus on the
likelihood of influence between a pair of repositories. Second,
there are studies [5], [6], [9] that focus on the author-author
level interactions and popularity and not on the repository-
repository level. Finally, there are efforts that study code-level
similarity, which we view as complementary to our work. We
discuss related works in more detail in Section VI.

As our key contribution, we propose PIMan1, a comprehen-
sive multi-dimensional approach to identify pair-wise plausi-
ble influence at the repository level. First, our method quan-
tifies the pair-wise influence of repositories considering most
social-interaction dimensions comprehensively: (a) repository
level interactions, (b) author level interactions, and (c) tempo-
ral considerations. Second, our method generates a Plausible
Influence Graph (PIGraph) for a group of repositories, where
an edge between two repositories exists if the Plausible
Influence Score (PIScore) of these repositories is greater than
the Plausible Influence Threshold (PIT). Our approach is a
comprehensive and flexible way to combine the multifaceted
information using either our default or customized parameter
values, tuned to match the niche needs of study.

We deploy our approach on a dataset of 2089 malware
repositories from GitHub [5] and study the influence relation-
ship of its repositories. These repositories have been created
during a span of approximately 12 years which can capture
the long-term effects and phenomena. Although our approach
can be applied to any type of repository, focusing on malware
repositories: (a) hones in on a rather well-defined community,
and (b) could manifest practical value in combating cyber-
crime. Our key results can be summarized in the following
points.

a. PIMan models influence flexibly with a directed
graph. Our approach captures repository-level influence rela-
tionships with a flexible and informative plausible influence
graph (PIGraph). In Figure 1, we illustrate the descriptive

1PIMan stands for Plausible Influence Modeling and Analysis.

power of our approach by looking at different levels of
influence using the PIT threshold. For PIT = 0.25, we get
a dense graph of 426 nodes and 1191 edges, whereas for
PIT = 0.7, the graph contains 6 nodes and 7 edges. By
tuning this threshold, we can hone in on different intensity
levels of influence. In addition, we show that our PIScore is
significantly different from other straightforward metrics of
popularity.

b. Plausible influence as a proxy for code-level similarity.
We show that our definition of influence correlates with code-
level similarity as shown in Figure 3 (Spearman coefficient,
ρ = 0.79, and p − value = 1.26e − 19). We consider the
following as an indirect validation of our approach: (a) our
quantification of influence is reasonable and (b) it can provide
useful results, e.g. pointing us to repositories with actual
collaboration and overlap at the code level.

c. Finding evidence of significant collaboration. We
observe significant collaboration and influence among the
repositories in our dataset. First, we identify 28 connected
components in our plausible influence graph (PIT = 0.25).
We find that 71% of the components have less than 5 reposito-
ries, while 7% components have more than 15 repositories. In
addition, the top 10 most influential repositories have directly
influenced 260 repositories in a non-trivial way (PIT = 0.25).
In fact, the most influential repository has directly influenced
67 repositories.

d. Revealing emerging structures and families. Analyzing
the influence graph, we can find interesting lineage and
clusters of influence. We find 19 repositories that influenced
at least 10 other repositories directly and spawned at least
two “families” of repositories. For example, the repository
“vaginessa/android-overlay-malware-example” is a highly in-
fluential information-crawler android malware created on June
17, 2015. It influenced 10 repositories directly and spawned
three families of malware: (a) ransomware with 3 repositories,
(b) malware for stealing user credentials, such as keyloggers,
with 4 repositories, and (c) RAT malware with 3 repositories.

Our work in perspective. Our approach is an essential
capability towards understanding the dynamics and evolution
of online platforms at the repository level. In fact, it can be
seen as a powerful component that can complement other
features such as popularity or similarity at the code level,
which capture related but different aspects of the repositories.

II. BACKGROUND

Our work focuses on GitHub, the largest open-source soft-
ware archive. Here, we provide some background on the
repository information that are available in GitHub.

A. The information in GitHub. GitHub is a massive
software hosting platform, that enables users to create public
repositories to store, share, and collaborate on projects, and
provisions a good number of features for the users to do dif-
ferent social networking interactions. The following describes
the key elements of a GitHub repository and its author.

1. Repository features: A repository contains the following
types of information.

a. Metadata: The most notable metadata fields are: (a) title,
(b) description, (c) topics, and (d) readme file. All these fields
are optional, and are provided by the repository author. As the
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Symbol Description
PIMan Plausible Influence Modeling and Analysis
PIGraph Plausible Influence Graph

PIScore Plausible Influence Score between two
repositories

PIT Plausible Influence Threshold to create
PIGraph

TPIScore Total Plausible Influence Score for a
repository

RepoSimScore Code-level Similarity Score between two
repositories

RepoPop Repository Popularity combining number of
stars, forks, and watches

RAI Repository-Author interaction score
AAI Author-Author interaction score
APop Author Popularity score in the network
D All Dataset with 2089 repositories

D 50 Dataset of 50 repository pairs with
RepoSimScore ≥ 0.8

D F50 Dataset of random 50 forked pairs of
repository

D 3Levels Dataset of 90 pairs of repositories within 3
ranges of RepoSimScore

TABLE I: Table of symbols used in this work.

text fields are provided by the author, they can be most often
unstructured, noisy, or missing altogether.

b. Source code: The core element of a software repository is
its source code. A repository can contain the software projects
which are written in various programming languages such as
C/C++, Java, and Python.

2. Social interaction features: It is helpful to group social
interactions into repository and author level features.

a. Repository level interaction: GitHub provides function-
ality for social interaction at the repository level. A repository
can be (a) starred, (b) watched to get notification about the
updates, (c) receive comments, and (d) forked by other authors.

b. Author level interaction: GitHub enables authors to create
a profile by adding social information. Authors can follow
other authors which is a direct indication of interest and
appreciation. As such, one would expect that followers are
likely to be influenced by that author and her repositories.

These two types of interaction define the repository popu-
larity in GitHub which we quantify as RepoPop. Note that the
repository versus author level features is not that strict; as for
example starring a repository by author A implicitly conveys
appreciation for both the repository and the author.

B. Fundamental techniques and algorithms. We provide
an overview of two fundamental techniques that we leverage
in our work: (i) Repo2Vec [2] to represent a repository into a
vector and (ii) HackerScope [10] to identify popular authors
in GitHub.

1. Code-level similarity - RepoSimScore: Quantifying
repository similarity at the code level is not trivial. For
validation purposes, we will rely on Repo2Vec [2], an em-
bedding approach that represents a GitHub repository in
an M-dimensional vector utilizing data from three types of
information sources that enables the repository similarity com-
putation, classification, and clustering tasks. An embedding
(a.k.a. distributed representation) is an unsupervised approach
for mapping entities, such as words or images, into a relatively
low-dimensional space by using a deep neural network on a
large training corpus [11], [12]. The approach combines the

repository metadata, the code, and the directory structure of the
repository to estimate RepoSimScore, the similarity between
two repositories.

2. Determining node significance in a directed graph:
Several approaches exist for capturing the significance of
interacting nodes in a complex network. In our case, the
interactions are captured by a directed graph, which points
to the use of hyperlink-induced topic search algorithm [6]
[13]. The algorithm used in these previous studies identifies
influential authors by incorporating a HITS approach on the
Author-Author graph which captures the interactions of the
authors as we will discuss later.

C. Datasets. Our main dataset is D All, which consists of
2089 Java malware repositories collected by a prior study [2]
to whom we are grateful whose goal is to transform a
GitHub repository into an M-dimensional embedding vector
and determine the similarity between two repositories.

We create three datasets which we use to tune parameters
and validate assumptions. First, we create D 50 by randomly
selecting 50 pairs of repositories with RepoSimScore ≥ 0.8.
Second, we create D F50 by randomly selecting 50 pairs
of forked repositories. Third, we create dataset D 3Levels as
follows. We randomly select 90 pairs of repositories from three
ranges of RepoSimScore: (a) 30 pairs from range [0-0.25), (b)
30 pairs from range [0.25-0.75), and (c) 30 pairs from range
[0.75-1.00].

III. PROPOSED METHOD

The main idea behind PIMan is to create a directed weighted
graph among repositories by computing Plausible Influence
Score, PIScore. Our approach can be summarized in three
steps. In the first step, we compute the influence score across
three dimensions: (a) repository-author interaction, (b) author-
author interaction, and (c) author popularity in the network.
In the second step, we calculate the Plausible Influence Score
(PIScore) using the weighted summation of influence scores
from these three dimensions. Finally, we create a directed
graph where an edge is added between two repositories if
their PIScore satisfies a defined threshold, PIT. The overview
of our approach is shown in Figure 2.

Step 1. Computing three influence scores. For a given
ordered pair of repositories R1 by author A1 and R2 by author
A2, we want to quantify the likely influence of repository R1
on R2. We compute the influence score for the repositories
considering three dimensions: R1-A2 interaction, A1-A2 in-
teraction, and popularity score of author A1.

a. Repository-Author interaction: We consider all repos-
itory level interactions from author A2 to repository R1, and
calculate the influence score for repository-author interaction,
RAI. First, we compute the Starring Score (SS), Forking Score
(FS), Watching Score (WS), and Commenting Score (CS).
Here, the Starring Score is equal to 1 (SS = 1) if author
A2 stars repository R1, otherwise it will be 0 (SS = 0).
Similarly, we compute (FS), (WS), and (CS) to capture
forking, watching, and issue commenting interaction score.
Finally, we normalize the score to keep it in the [0,1] range
by computing the arithmetic mean of these four scores.

We can combine these scores into a single score using many
different ways and by giving different weights to individual
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Fig. 2: The overview of PIMan: (a) we define and collect a dataset, (b) for all pairs of repositories in the dataset D All, we compute three
influence scores RAI, AAI and APop from repository-author relationship, author-author relationship, and author popularity in the network,
(c) we combine three influence scores to get the Plausible Influence Score (PIScore) for each pair, and (c) we create the directed influence
graph among the repositories using the PIScore value.

scores. Here we decide to first explore using equal weights to
all scores, therefore using the following formula:

RAI =
SS + FS +WS + CS

4
(1)

As we will see later, this way of calculating the score gives
convincing results. In the future, we will explore the use of
weights and other ways to combine the individual scores.

b. Author-Author interaction: We consider significant
interactions from author A2 to author A1 to calculate an
influence score (AAI) based on the author-author interactions.
First, we compute the Following Score (FS), Other Repository
Fork Score (FSOR

), Other Repository Star Score (SSOR
),

Other Repository Watch Score (WSOR
), Other Repository

Comment Score (CSOR
) if author A2 follows author A1, A2

forks, stars, watches any repository of A1 (except R1), and A2
comments on any repository of A1 (except R1), respectively.
Finally, we assign the normalized mean influence score to AAI
for the aforementioned interactions.

As above, we combine the individual scores giving the same
importance using the formula below:

AAI =
FS + FSOR

+ SSOR
+WSOR

+ CSOR

5
(2)

In future, we intend to consider other ways to combine these
interactions.

c. Author popularity: In GitHub, popular authors get
more attention and are more likely to influence other au-
thors. The prominence of an author here can be captured by
several aggregate metrics such as the number of followers,
the total number of stars across all their repositories, etc. as
we described previously. As a result, quantifying the overall
prominence of an author is not trivial. In order to compute
the score, we extend the approach that we mentioned earlier
in Section II.

c.1. Generating the author-author interaction graph. We
create a graph to capture the network-wide interaction among
authors. In more detail, we define a weighted labeled multi-
digraph where the nodes are the authors, and we consider six
types of relationships that are represented by directed edges
with different labels (u, v) from author u to v. These edges
can be: (a) a follower edge: when u follows v, (b) a fork

edge: when u forks a repository of v, (c) a star edge: when
u stars a repository of v, (d) a watch edge: when u watches
a repository of v, (e) a contribution edge: when u contributes
code in a repository of v, and (f) a comment edge: when u
raise a issue comment in a repository of v. These relationships
capture the most substantial author-level interactions.

c.2. Edge weight calibration. The above multigraph con-
sists of six different relationships, whose “significance” as
an interaction differs. For example, it is “cheaper” to star a
repository compared to forking it, which shows intention to
use and modify the original code. We want to appropriately
weigh the importance of each relationships and, to do this,
we consider how rare each relationship is. Intuitively, a rare
relationship should get higher importance. Specifically, we
consider the weight of a type of edge inversely proportional to
a measure of its relative frequency. We calculate the average
degree dtype for each type of edge, and normalize it dividing
by the minimum average degree dmin. We get the weight for
each type of edge following the equation wtype = dmin

dtype
: (i)

follower edge weight, wfollower = dmin

dfollower
, (ii) fork edge

weight, wfork = dmin

dfork
, (iii) star edge weight, wstar = dmin

dstar
,

(iv) watch edge weight, wwatch = dmin

dwatch
, (v) contribution

edge weight, wcontribution = dmin

dcontribution
, and (vi) comment

edge weight, wcomment =
dmin

dcomment

c.3. Author popularity score computation. We define two
roles of an author in the ecosystem: (a) producer, who creates
repositories, and (b) connector, who interacts with the other
authors by following them, and starring, forking, watching, and
commenting on their repositories. To quantify the popularity of
the author depending on the roles played, we associate each
node u with two values: (a) producer score, PSu, and (b)
connector score, CSu. The algorithm iteratively updates the
producer and connector scores until (i) they converge, or (ii)
tolerance threshold is reached. First, we initialize PSu and
CSu to value 1.0. Second, we iteratively update values as
follows: (i) for all nodes v with a directed edge to u, (v, u):
PSu =

∑
v w(v, u) ∗CSv , (ii) for all nodes z with a directed

edge from u, (u, z): for all nodes z pointed by u: CSu =∑
z w(u, z) ∗ PSz , (iii) we normalize PSu and CSu, so that∑
u PSu +

∑
u CSu = 1.

We repeat this step until the values converge. For conver-
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gence, we set a tolerance threshold for the change of the
value of any node. These two scores PSu and CSu capture
different aspect of authors popularity. Hence, we will get the
combined network-wide author popularity score as follows,
APop = PSu + CSu, while in the future we will consider
other ways to combine these two scores.

Step 2. Plausible influence score (PIScore). We attribute
the influence score of repository R1 to repository R2 as
PIScore (R1, R2).

a. Combining the influence scores. We define the PIScore
of R1 to R2 to be the weighted sum of the three scores
from repository-author interaction, author-author interaction,
and author popularity score. We compute PIScore using the
following equation,

PIScore = wRA ∗ RAI + wAA ∗AAI + wA ∗APop (3)

where wRA, wAA and wA are the weights for the score
derived from the repository-author interaction, author-author
interaction, and author popularity. We discuss in detail how
we calibrate these weights in the next section.

b. Temporal considerations. In general, we propose to
adjust the influence score by considering other practical con-
siderations. The most critical is time. The key idea is simple:
a recent repository cannot have influenced a repository in the
past. However, the implementation can hide several subtleties.
We outline two approaches.

Approach 1. We can simply consider the creation time of
a repository as a sufficient indication for creating a temporal
order. In this approach, if the creation time of repository R2
(T2) is earlier than that of repository R1 (T1), the plausible
influence score (PIScore) of R1 to R2 is set to zero. Otherwise,
we use the influence score as calculated above.

Approach 2. We can consider a “temporal phases of influ-
ence” where we recognize that: (a) repositories are created
over time, (b) the effect of time can be a real value between
zero or one. In other words, we can have a multi-step weight
where for different time differences of the repository creation
DTcreation = T1 − T2 we can have different values for a
modifying factor Temporal Modifying Factor (TMF ) within
[0,1]. For example: one rule could be: if DTcreation > −2
weeks, then TMF = 1, which means we “allow” a repository
to influence the repository that was created 2 weeks earlier.
The rationale is that software development takes time. Another
thought is to consider that a really old repository is less
likely to influence a recent repository, say 8 years later, given
the fast pace of evolution in software and techniques, so if
DTcreation > 8 years, then TMF = 0.2. We can then adjust
the PIScore by multiplying it with TMF .

Given time and space constraints, we adopted approach
1 in our work, which seems to give meaningful results. In
the future, we intend to develop a sophisticated temporal
consideration framework. However, such a framework will
need to be grounded on observed properties of repositories,
such typical duration, temporal properties of the intensity
of development as seen by the commits in the code, and
observations on how authors interact with other repositories,
e.g. how often does an author stars a 8-year-old repository.

Step 3. Creating the PIGraph: We create the PIGraph as
a directed weighted graph that captures the plausible influence
among repositories. Formally, we define a directed weighted
graph: PIGraph(V,E), where V is the repository set, E is
the set of edges, and we denote the weight of an edge e as
w(e). We consider an edge e between repositories R1 to R2, if
PIScore(R1, R2) (the influence score of R1 to R2) is greater
than or equal to a threshold PIT, and assign the weight of the
edge w(e) = PIScore(R1, R2).

After generating the PIGraph, each node can be an influ-
encer (having outgoing edges), an influencee (having incoming
edges), or both. We use the term influence outdegree to refer
to the number of outgoing edges of a node. We also define
Total Plausible Influence score, TPIScore, of a repository to
be the sum of the weights of all its outgoing edges. Both these
metrics capture the network-wide influence of a node as we
discuss later.

IV. TUNING AND EVALUATING OUR APPROACH

We present a systematic approach to select appropriate
values for the weight parameters of our approach and we
evaluate the effectiveness of PIMan.

A. Tuning the author popularity parameters. As we saw
in Section III, the author network consists of six different
relationships which show significantly different distribution.
To provide appropriate importance, we make the weight of
a type of edge inversely proportional to the measure of its
relative frequency. This way, we set (i) following edge weight:
wfollower = 0.30, (ii) star edge weight: wstar = 0.48, (iii)
fork edge weight: wfork = 0.15, (iv) watch edge weight:
wwatch = 0.29, (v) contributor edge weight: wcontributor =
0.8, and (vi) comment edge weight: wcomment = 1.0.

Furthermore, we calculate the popularity of authors, APop,
by combining the Producer Score (PS) and Connector Score
(CS). The algorithm iteratively updates PS and CS for each
node in the network. For the convergence, we set a tolerance
threshold of 10−10 for the change of the value of any node.
After 522 iterations, we obtain the converged values of PS
and CS for each author. Finally, we assign the sum of PS
and CS as the author popularity (APop) and rank the authors
based on the derived popularity scores.

B. Tuning the weights for the PIScore computation. Here,
we explain how we can systematically determine appropriate
weights to ensure that each type of influence is considered
adequately in Equation 3.

a. Weight selection: We choose the weight for each type
of influence by “training” the weights to reflect the likelihood
that there is code-level similarity between the repositories.
Specifically, we use a set of repositories for which we have
RepoSimScore, the code-level similarity, as we discussed in
Section II. We use the Spearman correlation coefficient [14]
between the influence score of each dimension and code-level
similarity. Note that we only do this once to calibrate the
weights.

In more detail, we calculate the weights in two steps by
using our D 50 dataset. First, we calculate the correla-
tion coefficient between RepoSimScore and influence score
of each dimension for each pair of repository in D 50
dataset. We find that RAI (Influence Scores of repository-
author interaction) is positively correlated to the RepoSimScore
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Fig. 3: The Plausible Influence Score (PIScore) is highly correlated
with the code-level similarity (RepoSimScore) (Spearman coefficient,
ρ = 0.79, and p-value = 1.26e-19) using the D 3Levels dataset.

(Spearman coefficient, ρRA = 0.38 and p-value = 3.82e-9).
By contrast, the correlation coefficient of Influence Scores of
author-author interaction (AAI) and author popularity (APop)
to the RepoSimScore are ρAA = 0.15 with p-value = 1.53e-12
and ρA = 0.06 with p-value = 1.92e-8 respectively. Finally,
we measure the weights in a way that reflects the ratio of the
corresponding ρ values, while the sum of the three weights
should be equal to one, which leads us to the following
weights: wRA = 0.65, wAA = 0.25 and wA = 0.10, which
we use in Equation 3.

b. Validating our weight selection. We further evaluate
the effectiveness of the weight selection of Equation 3 with
dataset D F50 which consists of pairs of forked repositories.
The assumption is that forked repositories are supposed to be
highly influenced by the original repositories as we discussed
earlier. We find that the repository-author interaction score
(RAI) is the most relevant dimension as the Spearman correla-
tion coefficient with respect to RepoSimScore is ρ = 0.52 with
p-value = 3.32e-11, whereas the values for AAI and APop are
ρ = 0.22 with p-value = 1.46e-8 and ρ = 0.09 with p-value =
2.73e-8 respectively. These coefficient scores validate that the
repository-author relationship is the most relevant dimension
in identifying influence among repositories which is why we
correctly consider it with a higher weight in our approach as
we describe above.

C. Evaluating our approach: We present our effort to
establish whether our influence metric provide reasonable
results.

Plausible Influence and code-level similarity. We find that
our definition of influence correlates relatively strongly with
code-level similarity as shown in Figure 3. In more detail,
we use the dataset D 3Levels, where each level in that
group corresponds to low, medium, and high RepoSimScore
as explained earlier. (Note that dataset D 3Levels is different
than D 50, which we used earlier to determine the weights.)
We then calculate the influence score between every pair of
repositories in D 3Levels. We plot the average influence score
per pair and RepoSimScore per pair grouped by level for ease
of viewing. We see that the two scores are strongly correlated.
Using the original data points, we find a Spearman coefficient
ρ = 0.79 with p-value = 1.26e-19, which indicates a robust
correlation.

Fig. 4: Increasing the PIT threshold reduces the PIGraph network
size keeping only higher influence edges.

To investigate further, we manually assess 10 ran-
domly selected pairs with high influence scores. For
example, we find that “androidtrojan1/android trojan”
and “vaginessa/android-overlay-malware-example” have high
RepoSimScore. We also find that author “vaginessa” follows,
stars and forks 5 of repositories of author “androidtrojan1”,
which leads to a high influence score.

V. STUDY: RESULTS AND INSIGHTS

In this section, we will provide additional indications that
our approach provides interesting and meaningful results.
Specifically, we apply our method on the D All dataset which
provides several interesting observations.

A. Part 1. Studying the PIGraph
A. The effect of the influence threshold PIT on the

PIGraph. We create the directed influence graph among
the repositories in the dataset following the steps described in
Section III. We add an edge from repository R1 to repository
R2 if PIScore(R1, R2) ≥ PIT. We study the PIGraph for
different threshold values and plot the graph properties: aver-
age degrees, number of nodes, and number of edges in Figure
4. It implies that increasing the threshold reduces the size of
the network. In addition, it also exhibits the highly influential
characteristics when the threshold PIT ≥ 0.40. Figure 1
shows that our model produces (a) the dense PIGraph having
the threshold PIT ≥ 0.25 with 426 nodes and 1191 edges,
and (b) the sparse PIGraph having the threshold PIT ≥ 0.7
with 6 nodes and 7 edges.

Observation: The above plot in Figure 4 provides some
guidance for selecting a value for the threshold parameter PIT.
We observe that the distribution of the graph properties creates
a knee in the range between 0.1 and 0.35. In order to ensure
non-trivial influence, we use a value of 0.25 in the rest of our
work unless otherwise stated.

Indirect validation: We argue that this analysis suggests
that our influence metric captures a reasonable breadth of
behaviors contingent on the PIT threshold. Capturing a breadth
of behaviors is a desirable property for a modeling approach.

B. The distribution of repository influence. The number of
directly influenced repositories follows a skewed distribution
with several extremely influential repositories. Here, we focus
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Fig. 5: Number of directly influenced repositories (Outdegree) vs
Total Plausible Influence (TPIScore) exhibits a linear correlation for
D 50 dataset.

on studying the PIGraph (PIT = 0.25) and we focus on
the edges that represent direct influence: we use the term
influence outdegree of a repository to refer to the number
of directly influenced repositories for a given PIGraph. We
find 39% of the repositories having zero direct influence on
other repositories while 8% of the repositories influenced at
least 20 repositories. In aggregate, the top 10 most influential
repositories have directly influenced 260 repositories in a non-
trivial way. Furthermore, the most influential repository has
directly influenced 67 repositories.

C. Influence: intensity versus the number of repositories.
The Total Plausible Influence score (TPIScore) provides a
different way to capture influence by also considering the
intensity of influence. We explore the relationships between
TPIScore and number of directly influenced repositories (out-
degree) by producing the scatterplot shown in Figure 5. There
is a strong, arguably linear, correlation between the two met-
rics. In addition, this plot can help us identify “niche” repos-
itories with a “cult” following: repositories with relatively
small outdegree but high influence. As an example, repository
“tiagorlampert/sAINT” is highly influential (TPIScore = 6.71)
with only 12 influencees.

B. Part 2. Clusters and Lineage of Influence
A. Finding evidence of collaboration. We want to identify

the relationships and groups of high influence. Overall, we
observe significant collaboration and influence among the
repositories in our dataset. First, we identify 28 connected
components in PIGraph (PIT = 0.25). We find that 71%
of the components have less than 5 repositories while 7% of
components have more than 15 repositories. This is a strong
indication of substantial collaboration among the repositories,
especially if we consider that we have already set a high
threshold for the influence in the graph.

Indirect validation: How cohesive are these components? To
answer this question, we manually analyze a set of components
selected randomly. We find one component with 16 reposito-
ries exclusively focused on Android malware, while another
component with 235 repositories contained three different
families of malware. We argue that this is an additional
indication that our approach provides meaningful results.

No Influential repositories using
PIMan

Popular repositories using
RepoPop

1 00aj99/AndroidMalware-
Example tiagorlampert/sAINT

2 CCrashBandicot/Android trojan adonespitogo/AdoBot

3 CCrashBandicot/Android-
KeyLogger M1Dr05/IsTheApp

4 molotof/sAINT tomgersic/AndroidKey-Logger
5 5l1v3r1/AndroidRansom-Ware Mandyonze/Droid-Sentinel

6 CristianTuretta/MAD-Spy PanagiotisDrakatos/Java-
Ransomware

7 tiagorlampert/sAINT harshalbenake/Android-Elite-
Virus

8 Mandyonze/Droid-Sentinel moloch–/Yoshimi-Botnet
9 androidtrojan1/Android trojan androidtrojan1/Android trojan
10 un4ckn0wl3z/Psyber-Project siberas/Sjet

TABLE II: Top 10 influential repositories identified by PIMan
and popularity metric RepoPop (which combines stars, forks, and
watches) in our D All.

B. Lineage: highly influential repositories spawn mul-
tiple repository “families”. In our analysis, we investigate
the effect of highly influential repositories, and observe the
following phenomenon. We find 19 repositories that have
influenced at least 10 repositories directly, and have spawned
at least two malware “families”. For example, the reposi-
tory vaginessa/android-overlay-malware-example is a highly
influential information crawler Android malware created on
June 17, 2015. It influences 10 repositories directly and has
spawned three families of malware: (a) user credential stealing
malware, (b) ransomware malware, and (c) remote access
trojan (RAT) malware.

C. Part 3. Repository Influence and Popularity
We compare the repository influence computed by PIMan

and GitHub popularity metrics, RepoPop. First, we create the
PIGraph for our dataset with a reasonable influence score,
PIT = 0.25. This creates an influence graph with 426 nodes
and 1191 edges. We calculate TPIScore, the total influence
score considering the outgoing edge weights for all nodes, and
rank the repositories. Second, we rank the repositories based
on RepoPop, the popularity metrics of GitHub. We compute
the sum of: (i) number of stars, (ii) number of forks, and (iii)
number of watches to determine the total popularity score for
a repository.

Influential repositories by TPIScore versus those ranked
by repository popularity. We want to understand the rela-
tionship between influence and popularity of repositories. We
show the top 10 repositories identified by both approaches in
Table II. We find that the top 10 most influential repositories
have influenced 260 repositories when the influence is sub-
stantial, PIT = 0.25. Comparing the two lists in the table,
we see that the two approaches have identified different sets
of repositories. They have only three repositories in common,
and they also differ in their ranking ([7,8,9] versus [1,5,9]).
This indicates that the concept of influence captures a different
perspective than popularity. That is not to say that one is better
than the other: the two concepts are related but not identical.

VI. RELATED WORKS

There are relatively few efforts that focus on establishing
influence between repositories, especially at the “social” level

7



that we consider here. We discuss the related works below
grouped in broad areas of focus.

A. Studies of author level roles in GitHub. The efforts in
this group have focused on identifying influential authors and
not repositories, as we do here. There are some works [15],
[16] that study the ecosystem of developers to measure the
social-coding collaboration in GitHub. Focusing on popularity
at the author level, some efforts [17], [18] have surveyed
developers to study influential users to understand how normal
users are influenced by highly influential users on GitHub.
Another effort [19] has proposed a ranking-based approach to
identify influential authors. A recent work [9] has proposed
a Following-Star-Fork-Activity based approach to measure
user influence in the GitHub developer social network. A
more recent work [6] studies influential authors in a hacker
ecosystem in GitHub.

B. Studies on repository popularity. Most prior efforts fo-
cus on quantifying and predicting repository popularity, which
is not exactly the same as influence. A recent work [7] has
proposed an approach to predict repository popularity using
starring and following relationships. There are efforts [20],
[21] who have used PageRank to identify popular reposito-
ries by analyzing the social coding interaction graph, where
two nodes are connected. Another work [22] uses network
centrality measures to identify influence among Python lan-
guage repositories. Another effort [8] has studied repository
influence, but focused only on starring relationships, which
ignores many other interactions.

None of these works have addressed the problem as for-
mulated here and in the comprehensive fashion of all the
relationships that we use in our work. Our work focuses on
establishing influence in the repository level considering (i)
repository-author interaction, (b) author-author interaction, and
(iii) author popularity in the network.

VII. CONCLUSIONS

We present PIMan, a comprehensive approach to establish
plausible influence among a set of repositories by capturing
social interactions among them. Once we determine the pair-
wise influence score, we can create a flexible and powerful
representation of influence (PIGraph). We showcase the ca-
pabilities of our approach by identifying interesting lineage
relationships and repository groups rendering significant in-
fluence among them. The intention is to highlight the great
potential for useful and insightful analysis that our approach
can enable.

In the future, we plan to expand the work as follows.
First, we will study the relationship between influence and
code-level similarity. Second, we will expand our analysis
to other types of software: (a) we will compare benign
software development with malware software and (b) we will
analyze in depth focused software branches, e.g. data mining
software, Android apps, etc. Third, we will closely study the
malware ecosystem on GitHub as this could provide significant
information in combating cyber-crime.

Finally, we intend to open-source our code and datasets
to maximize the impact of our work and facilitate follow up
research.
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